3.1 Equations

Equalities ($=$) $\quad 3 x+4=10$
\rightarrow Both sides of the equation are equal
\rightarrow There is one unique solution for x that would make the equation true.

Inequalities ($\geq \leq><$) $2 x-4 \geq 8$
\rightarrow Both sides are not equal
\rightarrow You can still solve for x but it will have more than one solution

Solving for X
** every operation you do to one side of the equation, you must do to the other side as well, it is like keeping the scale balanced**

Ex 1: Level I
$x-5=-6$
Ex 2: Level II
$3 x+3=9$

Ex 3: Level III
$5 x+25=-3 x-23$

Ex 4: Level IV

$$
6(x-2)=-4(2 x+1)
$$

Note that we isolate our unknown cancelling the operations in the order of SAMDEB (backwards of BEDMAS)

Ex 6: (page 75 \# 3(b)
$-\frac{2}{3} x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{2}$

Put all fractions over a common denominator; now remove the denominator

Practice:

Day 1: Page 75 \# 1-6 (aceg in each)

Day 2: P. 76 \# (8-20 even); 25, 26

More examples from page 76
\#7) Nancy is 2 years older than her brother Eric. In 5 years, the sum of their ages will be equal to 40 years. What is the present age of each?

	Eric	Nancy
Now		
In 5 years		

3.2 Inequalities

-A- Properties of Inequalities
Adding / Subtracting:
\rightarrow When you add (or subtract) the same number on each side of an inequality, you get an inequality in the SAME direction.

Ex:
$x-5<16$
Sign stays the same direction

Solution set:
Interval:
Number line:

Multiplying/Dividing:

A) If you multiply (or divide) both sides by the same positive number, you keep the inequality sign the same direction
Ex:

$$
3 x \geq 12
$$

Sign stays the same

Solution Set:
Interval:
Number Line:

Multiplying/Dividing:

B) If you multiply (or divide) both sides by the same negative number, you reverse the inequality sign
Ex:
$-3 x \geq 12$
Sign changes direction

Solution Set:
Interval:
Number Line:

Ex: solve for x, write the solution set, interval notation and number line

1) $5 x-7<13$
2) $4 x+2 \geq 8 x-6$
S.S. :
S.S. :

Interval :
N.L. :
N.L. :

Ex: solve for x, write the solution set, interval notation and number line
3) $2 x-7 \leq 9 x+14$
4) $-\frac{1}{2} \mathrm{x}+3 \geq 9$
S.S. :
S.S. :
Interval :
Interval :
N.L. :
N.L. :

3.2 Inequalities

-B- Solving inequalities with one unknown Steps to solving Word Problems:

1. Read the problem. Highlight key words and important information.
2. Draw a diagram (if applicable) and label it.
3. Define your variables (let statement)
4. Choose and write the formulas you will need.
5. Solve the problem showing all your work neatly.
6. Check your work (validate).
7. Write a conclusion (\therefore).

Ex 1: The length of a rectangle 55 times its width.
A) find the width if the perimeter is at least 60 m .
Let width be x
Then length be $5 x$

$5 x$

Ex 1: The length of a rectangle is 5 times its width.
B) find the width if the area is at most $500 \mathrm{~m}^{2}$.

Let width be x
Then length be $5 x$

Ex 1: The length of a rectangle is 5 times its width.
C) find the width if the perimeter is at least 60 m and the area is at most $500 \mathrm{~m}^{2}$.

3.2 Inequalities

-C- Solving inequalities in a given domain

- Recall: $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$

16) The length of a rectangular field measures 10 m more than its width. The perimeter of the field is more than 80 m but less than 100 m . In what interval will the width of the field be?

Do Activity 7 Page 84

a) $x+1 \leq 4$
b) $\quad-3 x>6$

1. If $x \in \mathbb{R}$:
2. If $x \in \mathbb{Z}$:
3. If $x \in \mathbb{Z}$:
4. If $x \in \mathbb{N}$
5. If $x \in \mathbb{N}$ no solution on N.L

Practice:

W.S. 3.2-C- Solving in a domain

18) A taxi driver charges an initial fee of $\$ 1.25$ and then $\$ 0.75$ per km traveled. In what interval is the distance traveled if the cost of the trip is more than $\$ 11$ but less than $\$ 14$?

